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A B S T R A C T  

We show stable ergodicity of a class of conservative diffeomorphisms of 
T n which do not have any hyperbolic invariant subbundle. Moreover, the 
uniqueness of SRB (Sinai-Ruelle-Bowen) measure for non-conservative 
C 1 perturbations of such diffeomorphisms is verified. This class strictly 
contains non-partially hyperbolic robustly transitive diffeomorphisms 
constructed by Bonatti-Viana [4] and so we answer the question posed 
there on the stable ergodicity of such systems. 

1. I n t r o d u c t i o n  

A main objective of Dynamical Systems is to answer the following questions: 

(1) What  main topological or metric properties are satisfied by the majority 

of dynamical systems? 

(2) Under which conditions do such properties persist after small perturbation 

of the system? 

Ergodicity is a basic feature for conservative dynamical systems that  yields 

the description of the average time spent by typical orbits in different regions 

of the phase space. For non-conservative systems, existence and uniqueness (or 

just finiteness) of SRB (Sinai-Ruelle-Bowen) measures plays a similar role. 

A few years ago Palis [11] conjectured: Every system can be C r approximated, 

any r > 1, by one having finitely many SRB measures with their basins covering 

a full Lebesgue measure of the phase space. 

* Current address: Departamento de Matem~tica ICMC-USP-S~o Carlos, Caixa 
Postal 668 Ss Carlos, SP, Brasil; e-mail: tahzibi@icmc.sc.usp.br 
Received September 27, 2002 and in revised form November 26, 2003 

315 



316 A. TAHZIBI Isr. J. Math. 

In other words, one expects that for a "majority" of diffeomorphisms, the 

average time spent by typical orbits in different regions of the phase space is 

described by at most a finite number of measures. 

In this direction, in [1] the authors show the existence of finitely many SRB 

measures with basins covering a full Lebesgue measure of the ambient manifold, 

for a large class of partially hyperbolic systems and more generally for systems 

displaying a dominated splitting. 

Defini t ion 1.1: Let M be a compact manifold and f:  M ~ M a C 1 diffeomor- 

phism. We say that the splitting T M  = E cs ~ E TM is dominated if it is D f  

invariant and there exist C > 0 and A < 1 such that 

ILDflE~ -~ c~ II.IlDf IE:(~)II ~ A for all x e M. 

A diffeomorphism is called par t ia l ly  hyperbol ic  if the tangent bundle 

admits a dominated splitting and at least one of the sub-bundles E c~ or E cs is 

uniformly hyperbolic. 

In this work we take over from where [1] and [4] left off, to provide suffi- 

cient conditions for stable ergodicity (conservative case) and uniqueness of SRB 

measures (general dissipative case). The main novelty of our results is that we 

prove that very weak hyperbolicity (dominated splitting) may suffice for stable 

ergodicity. 

Defini t ion 1.2: A C 2 conservative diffeomorphism f is stably ergodic if any C 2 

conservative diffeomorphism g nearby to f in C 1 topology is also ergodic. 

Let us recall that Anosov [2] proved that every C 2 globally uniformly hyper- 

bolic volume preserving diffeomorphism is ergodic. In the corresponding dissi- 

pative setting, Sinai [16] proved existence and uniqueness of the SRB measures. 

More recently, Pugh, Shub and other collaborators obtained stable ergodicity 

for a large class of volume-preserving diffeomorphisms, assuming a dominated 

splitting E s | E ~ �9 E ~ exists, where E ~ is uniformly expanding and E ~ is 

uniformly contracting. (See [5] and references therein.) 

Here we drop any assumption about existence of uniformly hyperbolic sub- 

bundles. Before we give the precise statement of our results, let us comment on 

some of the main new difficulties in our context. 

A classical strategy for proving ergodicity, going back to Hopf, is by propagat- 

ing statistical behaviors of orbits along invariant (stable and unstable) foliations. 

In the context treated in [5] and related publications there are integral foliations 

tangent to E s and E u. One says that the map is accessible (resp. essentially 
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accessible) if any (resp. almost all) two points may be joined by a path con- 

sisting of consecutive segments, which are part of stable or unstable foliations. 

Accessibility or at least essential accessibility is a key ingredient for proving 

ergodicity. 

Such a strategy does not make sense in our case, since systems with a domi- 

nated splitting need not have invariant foliations. As we shall explain in more 

detail later, we handle this by first proving non-uniform hyperbolicity: all Lya- 

punov exponents non-zero almost everywhere. This places us in the setting 

of [1] and [4] and we prove uniqueness of the SRB measure constructed there. 

Restricted to conservative diffeomorphisms this gives stable ergodicity. 

1.2. STATEMENT OF RESULTS. Let M be a compact manifold endowed with 

a volume form w. Let f :  M ~ M be a diffeomorphism. Given an f-invariant 

Borel probability measure #, we call basin of # the set B(~t) of x E M such that  

lira -1 E r  = / r  for every r E C~ 
n-+oo n 

j=0  

and say that  # is a physical or SRB (Sinai-Ruelle-Bowen) measure for f if B(#) 

has positive Lebesgue measure. 

Let us introduce the class of diffeomorphisms for which our results apply. 

The class 1/C Diff I (T n) under consideration consists of diffeomorphisms which 

are deformations of an Anosov diffeomorphism. To define V, let f0 be a linear 

Anosov diffeomorphism of the n-dimensional torus "li 'n (in fact, we need f0 only 

to be an Anosov diffeomorphism on M = %n whose foliations lifted to R ~ are 

global graphs of C 1 functions over the corresponding invariant subbundles). 

Denote by T M  = E~ | E~ the hyperbolic splitting for f0 with dim (E~) = s, 

dim (E~) = u and let V = U v / b e  a finite union of small pairwise disjoint balls 

in T n. We suppose that  ]0 has at least one fixed point outside V. By definition 

f C 12 if it satisfies the following C 1 open conditions: 

(1) T M  admits a dominated decomposition and there exist small continuous 

cone fields C TM and C cs invariant for D f  and D f  -1 containing respectively 

E~ and E(~. 

(2) f is C 1 close to f0 in the complement of V, so that  for x ~ V there is 

a < l :  

II(DflrxDc~*)-lll < er and HDfJrxDcsrl < ~.  

(3) There exists some small ($o > 0 such that  for z E V 

II(D/ITxDCD-111 < 1+5o  and II(Dflr~Dcsll < 1+5o  
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where D cu and Dcs are disks tangent to C cu and C es. 

THEOREM 1: Every f E V n Diff~(~ n) is stably ergodic. 

For non-conservative diffeomorphisms in V we prove uniqueness of SRB 

measure. In fact we assume the diffeomorphisms are volume hyperbol ic  

(in the conservative case this is automatic from the domination property): 

Definition 1.3: Let f: M --+ M be a C 1 diffeomorphism and T M  = E 1 | E2; 

we say that this decomposition is volume hyperbolic if for some C > 0 and 

A < I  

I det (Df~(x) lE1) l  <_ C)~ n and I de t (Df -n(x) lE2)[  <_ CA n . 

THEOREM 2: Any  f E ~2 A Diff2('l[ 'n) for which the dominated decomposition 

T M = E cs • E c~ is volume hyperbolic has a unique SRB measure with a full 

Lebesgue measure basin. 

In Theorem 2, volume hyperbolicity is crucial for proving non-uniform hyper- 

bolicity. Roughly speaking, by means of this property and a good control of the 

invariant leaves of fo, typical orbits do not stay a long time in V and so their 

asymptotic behavior is mostly influenced by the hyperbolicity condition 2. 

1,2. OUTLINE OF THE PAPER. The paper is organized as follows. In Section 2, 

we give some preliminary definitions which will be used in the rest of the paper. 

In Section 3, we exhibit an explicit open set of diffeomorphisms which satisfy 

the hypothesis of our results and yet have no uniformly hyperbolic (expanding 

or contracting) invariant subbundle. The complete proof of Theorems 1 and 2 

occupies Sections 4-7. 

In Section 4 we analyze the geometry of the basins of the SRB measures con- 

structed in [1] for systems with dominated splitting. In Section 5 we deduce our 

main results from certain facts that are proved subsequently. Indeed in Section 

6 we prove non-uniform hyperbolicity for almost all points of any submanifold 

with good geometry. In particular, Lebesgue almost all points of the ambient 

manifold satisfy the non-uniform hyperbolicity conditions. The other important 

ingredient, proved in Section 7, is absolute continuity of local stable/unstable 

lamination obtained from Section 6. It is worthwhile pointing out that, since we 

have to deal with possibly non-regular points, the conclusions of these two last 

sections cannot be deduced from general arguments in Pesin theory. In fact, 

good control of the angle, given by the domination condition, is crucial to our 

approach. 
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2. Prel iminaries  

In this section we consider some ways of relaxing uniform hyperbolicity. 

2.1. NON-UNIFORM HYPERBOLICITY. This approach is due to Pesin [13] and 

it refers to diffeomorphisms with non-zero Lyapunov exponents in a full measure 

subset of phase space. Recall that  A is a Lyapunov exponent at x if 

lim -1 l o g [ [ D z f n ( v ) [  [ = A 
n:--~ oo n 

for some vector v 6 T z M .  By Oseledets' theorem Lyapunov exponents exist for 

a total probability subset of M. 

To construct SRB measures for systems with a dominated splitting, by the 

methods in [1] we need to verify "non-uniform hyperbolicity" in a total Lebesgue 

measure set in the following sense. There exist a positive Lebesgue measure set 

H and Co > 0 such for x 6 H 

n--1 
1 z__.S-'l~ -1 (1) lim sup - II(DflE:J(z)) II 

n --~. oo n 
j=O 

and also 

n--1 

(2) lim sup -1 E log [i D f[ ECSfJ(x)ll - < -Co.  
n--+oo n 

j = 0  

In our setting we prove that  H has full Lebesgue measure. This is a crucial 

step for the proof of Theorem 1. We mention that  the above conditions imply 

non-zero Lyapunov exponents. Let us just mention that  in the Pesin theory, 

some invariant measure is fixed and non-uniformly hyperbolic systems refer to 

ones without zero Lyapunov exponent in a total measure set. But, we are 

working with the Lebesgue measure which is not invariant for non-conservative 

diffeomorphisms of )2. In this paper, by non-uniform hyperbolicity we refer to 

the above conditions. 
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2.2. DOMINATED SPLITTING. This approach was much used by Marl6 in his 

proof of the stability conjecture [9]. Suppose that T M  = E ~ -< E c~ is a domi- 

nated splitting of T M .  By this notation we emphasize that E c~ is dominating 

E ~. Whenever we have a dominated splitting on T M  as defined in 1.1 there 

are two cone fields C cu (center unstable) and Ccs (center stable) with the 

following properties: 

_ C c u  x CCU(x) = {Yl + v2 e E cs 0 ECU; IlVll[ < ally211}, Df(CCaU(X)) C )~a(f( )), 

CC~(x) = {vl+v~ e ECSGECU; IIv211 <_ a[Ivlll}, Df- l (CCS(x) )  C C~Sa(f-l(x)). 

To verify non-uniform hyperbolicity for the diffeomorphisms in Theorems 1 

and 2, we use the volume hyperbolicity property defined in Definition 1.3. 

For non-trivial examples of diffeomorphisms with volume hyperbolicity prop- 

erty we point out that (see [3]) a dominated splitting T M  = E 1 -< E 2 for any C 1 

conservative diffeomorphism is volume hyperbolic. From this and the continuity 

of det Dr,  we conclude the following: 

COROLLARY 2.1: For any f C V N Diff~(~'n), there exist O" 1 ~> 1 and C > 0 

such that 

I det(Dfn(x)lT~(DCS)) I <_ Ca~ ~ and I det (Df-n(x) lTz(DC~))  I <_ Ca~ ~ 

where Dcs and D TM are disks tangent to C c~ and C ~ .  

3. Robustly transitive diffeomorphisms of T n 

Here we give a C 1 open set of diffeomorphisms that satisfy the hypothesis of 

Theorems 1 and 2. A diffeomorphism f is called robus t ly  t ransi t ive  if any C 1 

nearby diffeomorphism to f is also transitive. The first non-partially hyperbolic 

and robustly transitive example is constructed in [4] on ~,4. We will construct the 

example of robustly transitive diffeomorphisms without hyperbolic sub-bundles 

in higher than 4 dimensions. Let f0 be a volume preserving linear Anosov 

diffeomorphism on the T n for which 

T~(V n) : ~ : E~ ~ E~ -<. . .  -< G - 2  ~ E~ 

where dim(E ~) = 2 and dim(E~) = 1 and E ~ is uniformly expanding and all 

E s are uniformly contracting. 

We may suppose that f0 has fixed points Pl ,P2 , . . .  ,pn-2. Let V = U B(p{, 6) 

be a union of balls centered at p{ and radius sufficiently small ~ > 0. By it- 

eration, we may also suppose that f0 has a fixed point out of V. The idea is 
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to deform the Anosov diffeomorphism inside V, passing first through a pitch- 

fork bifurcation along (E~ | ES+l)(pi) inside B~ = B(pi,5) and then another 

deformation (see Figure 1) to get a complex eigenvalue for a fixed point near to 

Pi .  

More precisely, first we modify along E s (P i ) �9  EiS+l (Pi) for 1 < i < n -  3 until 

the stable index of Pi drops one and two fixed points qi, ri are created. These 

new fixed points have stable index equal to n - 2. In the next step we mix the 

two contracting sub-bundles of Tq, M corresponding to E~ (qi) and E~+ 1 (qi) and 

get a complex eigenvalue. These modifications can be done by an isotopy and 

in a way to obtain volume preserving diffeomorphisms (see [4]). 

After these deformations we get a new diffeomorphism which we also call f 

and we have the following D f  invariant decomposition for the tangent bundle 

of qi: 

Tq~ M = E1  -.~ . . .  -.~ E i - 1  ~ F i  ~ . . .  -.~ E u 

where Ei is one-dimensional, E ~ is two-dimensional and uniformly expanding 

and Fi is the two-dimensional sub-bundle corresponding to the complex eigen- 

value. Finally, we do the same for Pn-2, but in its unstable direction. That  

is, after the modifications along the unstable sub-bundle of Pn-2 we get a new 

fixed point qn-2 such that  

Tq,~_:M = E1 ~ ... -< E~_2 < F~-2 

and Fn-2 is the sub-bundle corresponding to the complex expanding eigenvalue 

of qn- 2. 

E i)eEhl(pi) 

Figure 1. Deformation of Anosov. 

qi 

In this way we get a C 1 open set l) of diffeomorphisms satisfying the conditions 

(1)-(3) mentioned in the Introduction. Another important fact is about the 

mentioned hyperbolic fixed point outside V. 
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We supposed that there exists a hyperbolic fixed point q of fo outside V with 

stable i nde xs  = n - 2 i n o u r  example. For any f E ~), as / i s  C 1 near to 

Anosov diffeomorphism outside V, it has a fixed point outside V which is the 

continuation of q, which we will also call q. 

It is easy to see that  the stable manifold of the continuation of q intersects 

any disk tangent to C c~ with radius more than e0, for some small ~o > 0. The 

similar thing for the unstable manifold and disks tangent to C cs happens. This 

is just because of the denseness of stable and unstable leaves of fo. Indeed, 

take a compact part of WS(q, fo) to be e0-dense. Now, if V is small enough 

this compact part of the stable manifold continues to be a part of the stable 

manifold for the continuation of q. 

Remark 3.1: Clearly, the last item above is satisfied for f E Y of Theorems 1 

and 2, as V is small enough. Namely, any f E Y has a hyperbolic fixed point 

q ~ V such that  its stable and unstable manifolds are ~0-dense. In fact, later 

we prove the density of these invariant manifolds (see Proposition 5.1). 

LEMMA 3.2: f E )2 is robustly transitive. 

Proof: The proof goes as in the T 4 case in [4, Lemma 6.8] and we just re- 

member the steps. The main idea to prove robust transitivity is to show the 

robust density of the stable and unstable manifold of an hyperbolic fixed point. 

We show the density of invariant manifolds of q defined in Remark 3.1 (see 

Proposition 5.1). 

Let U and V be two open subsets. Using the A-lemma and the density of 

invariant manifolds of q we intersect some iterate of U with V and get transitivity 

of f .  | 

LEMMA 3.3: f E ]) is not partially hyperbolic. 

Proof: This is just because of the definition of partially hyperbolic systems, f is 

partially hyperbolic if T M = E s | E c | E ~ is a decomposition into continuous 

sub-bundles where at least two of them are non-zero where E s and E ~ are 

respectively uniformly contracting and expanding. Suppose that  f is partially 

hyperbolic. By the continuity of the decomposition of T M  and existence of a 

dense orbit by Lemma 3.2, the dimension of E ~ and E ~ is constant. 

We claim that  dim(E s) = n - 2 and this results in a contradiction, because 

in Tp, M there do not exist n - 2 contracting invariant directions. To prove 
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the claim observe that if we suppose that dim(E s) = j < n - 2 ,  then by the 

decomposition of Tqj M 

Tq~M = E1 -~ ""  ~ Ej-1  -~ Fj ~ . . . - ~ E  ~. 

By definition, ES(qj) must contain E1 • . . .  | Ej-1 and then, as Fj does not 

have any invariant sub-bundle, we conclude that dim(ES(qj)) > j + 1 and this 

is a contradiction, because dim(E s) = j. This shows that dim(E s) = 0. By 

investigating Tp~_2M , it is obvious that T M  cannot have invariant unstable 

sub-bundles, too. | 

4. cu-Gibbs measures  

Pesin and Sinai defined and constructed Gibbs measures for partially hyperbolic 

dynamical systems. They defined Gibbs measure as measures which are abso- 

lutely continuous with respect to Lebesgue measure along the unstable foliation 

of a partially hyperbolic diffeomorphism ([12]). 

For systems with a dominated splitting T M  = E cs -< E cu, one defines cu- 

Gibbs measure as an invariant measure with positive Lyapunov exponents along 

E TM and absolutely continuous with respect to the Lebesgue measure along the 

Pesin local unstable manifolds tangent to E cu. In [1], cu-Gibbs measure for 

the systems with dominated splitting and having non-uniform hyperbolicity 

property is constructed. However, they show that under a technical condition 

called "simultaneous hyperbolic times" the cu-Gibbs measures are in fact SRB 
measures. 

In this paper we prove that any f E ]; is non-uniformly hyperbolic as required 

in [1] and, without verifying the simultaneous hyperbolic times condition, in 

Appendix B prove that the constructed eu-Gibbs measures are SRB. In fact we 

prove the following theorem. 

For a submanifold D of M, by LebD we mean the Lebesgue measure of D 

and by A C B (#mod-0) we mean #(A \ B) = 0. 

THEOREM 3: Let f be as in Theorem 2. Then M = U B(#~) (mod-0) where pi 

are ergodic S R B  measures and for each #i there exists a disk D ~  tangent to a 

center-unstable cone field such that D ~  C B(#i)  (Leb(D~) mod-0). 

Let us recall briefly the construction of cu-Gibbs measures. Fix a C 2 disk 

tangent to C cu at every point of it and intersecting H (the set of points having 

non-uniformly hyperbolic behavior) in a positive Lebesgue measure, where by 

measure we mean the Lebesgue measure of the disk. Now consider the sequence 
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/-t n of averages of forward iterates of Lebesgue measure restricted to such a disk. 

A main idea is to decompose #n as a sum of two measures, denoted by vn and 

tin, such that  vn is uniformly absolutely continuous on iterates of the disk and 

has total mass uniformly bounded away from zero for all large n. Taking a 

sub-sequence if necessary we may suppose that  #n converges to # and un to v. 

Finally, we show that absolute continuity passes to v, the limit of Vn. More 

precisely: 

PROPOSITION 4.1 ([1]): There exists a cylinder C (a diffeomorphic image of 

product of two balls B ~ and B s of dimensions dim(E c~) and dim(E cs) in M) 

and a family/Coo of disjoint disks contained in C which are graphs over B ~ such 

that: 

(1) 
(2) 

The union of all the disks in ]C~ has positive u measure. 

The restriction of v to that union has absolutely continuous conditional 

measure along the disks in ]C~. 

So we have # = u + 7], where v is absolutely continuous with a bounded away 

from zero Radon-Nikodym derivative along a family of cu-disks. In this way we 

conclude that  there exist disks "7 where Leb~-almost every point in 7 is regular 

and, by absolute continuity of the stable manifolds "for regular points", one 

gets a # positive measure set in the same ergodic component of #. Normalizing 

the restriction of # to the ergodic component above, we get an ergodic invariant 

probability measure #*. 

As the conditional measure of # with respect to )Coo is the sum of the 

conditional measures of v and y, we conclude the following: 

LEMMA 4.2: There exists a disk D ~ in IC~ such that Lebo~-almost every 

point of D ~176 belongs to the basin of It*. 

By Proposition 6.4 in [1], M = U B(#i) ( m o d - 0 ) ,  where #i 's are cu-Gibbs 

ergodie measures. In fact these measures are also SRB measure, as we show in 

Appendix B. By the above lemma the proof of Theorem 3 is complete. 

5. U n i q u e n e s s  o f  S R B  m e a s u r e s  

In this section we prove Theorem 1 and Theorem 2 using some facts which we 

prove in the next sections. Let #i be as in Theorem 3. We prove that  for f E V, 

B(l~i) fB B(#j )  76 ~ for all i ~ j .  But as #i 's are ergodic so they are the same 

one. Let q be the fixed hyperbolic point of f mentioned in Remark 3.1. 
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PROPOSITION 5.1: The global stable manifold of q is dense and intersects 
transversally each D~. 

Proof'. To prove Proposition 5.1 we claim that some iterate of D~ contains a 

disk tangent to a center-unstable cone field with radius more than eo of which 

also almost every point belongs to B(#i). This proves the Proposition, because 

of the ~o-density of the WS(q). (See Remark 3.1.) 

To prove the above claim consider a lift ]: ~n__+~n of f and let 7r~ be the 

projection along the stable foliation of ]0 (the Anosov one) from If{ n to ]~. As 

D~  is tangent to cone field C c~ we may consider a global graph F of a C 1 

function 7: I~ --+ ]~s, IIDTII _< e (e is the angle of the cone field) which contains 

D~.  Let F~ := ]~(F). Each F,~ is the graph of a C 1 function with small norm 

of derivative. This is because f~(F) is a proper embedding of If{ u in Rn whose 

tangent space at every point is in C cu and C TM is forward invariant. 

Now as Df expands the area of disks in the center unstable direction, by 

arguments of [4, Lemma 6.8] there exists some point x0 in faD (D~) such that 

its positive orbit never intersects V, so any small disk in Fno around x0 will 

have some iterate containing a disk with radius at least Co. (See Remark 3.1 

for ~0.) In this way we prove the density of W~(q). If U is any open set, just 

consider a center-unstable disk D, in the intersection of U and an unstable leaf 

of f0 and argue as above, substituting D~  by D. The density of W~(q) comes 

out by the similar method. 

Now observe that because of the invariance of continuous cone field C cs, the 

global stable manifold of q is tangent to Ccs at any point and consequently the 

intersection of W ~ (q) and D~  is transversal. | 

Using the A-lemma, for n large enough fn(D~) and W~(q) are C 1 near 

enough. On the other hand, in Section 6 (Corollary 6.8) we prove that almost 

every point of WU(q) has a local stable manifold. This implies that there exists 

S C W~(q) with Leb(S) > 0 such that for all x E S the size of WiSe(x) is 

uniformly bounded away from zero and Wl~oc(X) intersects f~(D~) for n large 

enough. We need an absolute continuity property proved in Section 7 to con- 

clude the following: 

Lebp(~)  ( U W/oc(X) n B(~i) n fn(T)~)) > O. 
xES 

We would get the same thing for #j and this enables us to find at least two 

points x,y respectively in B(#~) and B(pj) such that they are in the local 
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stable manifold of the same point in S (see Figure 2). This means 

n - 1  
lim 1 E r  lira l n-~ - = - r for every r E C~ 

n - ~  Tt j=O n - + ~  n j=o 

and consequently B(#~) N B(#j) ~ ~, which implies #i = #j. We have proved 

that the decomposition of ,]~n (rood 0) by the basin of SRB measures contains a 

unique element (mod 0) or there exists just one SRB measure whose basin has 

full Lebesgue measure. 

W (q) 

D~ ~ D ~ 

Figure 2. Intersecting basins via local stable manifolds. 

Now let us explain how to conclude Theorem i from Theorem 2. If f preserves 
the Lebesgue measure, the dominated splitting of the tangent bundle is volume 
hyperbolic (see Preliminary). So by Theorem 2, for almost all points 

1 n-1 / 
l i m  n ~ r = Cd# for every r e C~ 

j=0 

and immediately we have ergodicity of Lebesgue measure, completing the proof 

of Theorem 1. 

Remark: In Theorem 2 we prove the uniqueness of the SRB measures. The 

unique SRB measure is absolutely continuous along disks which are unstable 

manifolds corresponding to positive Lyapunov exponents. By [8] one has the 

following: 
ht,(f ) = ~ / ~ +  where ~+ = max{0,~}, 

where hi are the Lyapunov exponents of the ergodic measure #. In fact, as 
the basin of the physical measure constructed in Theorem 2 occupies a total 
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Lebesgue measure set of manifold, it will be the unique measure among the 

ergodic measures with non-zero Lyapunov exponents which satisfy Pesin's for- 

mula. 

We observe that  with the same method with which we have proved the unique- 

ness of SRB measures, one also can show that  # is the unique ergodic measure 

satisfying Pesin's equality and having u (= dim E ~') positive Lyapunov expo- 

nents. Then by the ergodic decomposition theorem it is the unique invariant 

probability with the mentioned properties. So the following question is inter- 

esting: 

QUESTION 1: Does any f as in Theorem 2 have only one measure satisfying 

Pesin 's equality? 

6. N o n - u n i f o r m  h y p e r b o l i c i t y  

In this section we prove that  f E V is non-uniformly hyperbolic. In fact, we 

use the mechanism to prove the non-uniform hyperbolicity presented in [1] and 

prove the non-uniform hyperbolicity property for almost all points of many 

submanifolds. In particular, we prove the non-uniform hyperbolicity for almost 

all points of the unstable manifold of q, the fixed point of Remark 3.1. 

Let W be a u-dimensional submanifold of T n and 7~ the natural projection 

from ~n to T n. We call W dynamically fiat according to the following definition. 

Definition 6.1: W is dynamically fiat if for Wn, any lift of fn (W)  to ~ n  

Leb(W~ A K) ~ C where K is any unit cube in ~n and C is a constant de- 

pending only on f .  

LEMMA 6.2: W~(q) is dynamically fiat. 

Proof: Consider ~'0 (q), the leaf of unstable foliation of fo which passes through 

q, and let 9~n = fn(:Fo(q)). As So is a leaf of a linear Anosov diffeomorphism, 

any lift of it to ~ will be a u-affine subspace and is a proper image of I~ ~ to I~ n . 

By invariance of the thin cone field C TM we conclude that  the tangent space of 

any lift of 9~n, which we also call 5~,  at every point is in C c~ and it is also the 

proper image of II~ u . In this way, for any unit cube K,  9~n n K can be seen as 

the graph of a C 1 function with u-dimensional base of the cube as its domain. 

This function has a small norm of derivative which is independent of cube K 

and n; this is because its graph is tangent to C TM. So 9vn n K has a uniformly 

bounded area (with respect to Lebesgue measure of ~'n) and this is what we 
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want, because the intersection of the unstable manifold of q with K is contained 

in the limit of . )r  n f"l K.  | 

PROPOSITION 6.3: Let W be a dynamically fiat submanifold and f satisfying 
the hypothesis of Theorem 2. Then every small disk in W contains a Lebesgue 
total measure (Lebesgue measure of W) subset for which 

-- E C8 l imsup 1 log II(DflEfj(x))ll <_ -co, 
n--+oo n 

j = 0  

n--1 

lim sup 1 E log c~ -1 II(DIIEfJ(x)) II <--Co, 
n--.+ cx~ n 

j = 0  

where Co > O. 

Proof." Here we use the same arguments of [1] and prove that: 

LEMMA 6.4: There exists e > 0 and a total Lebesgue measure subset of any 

small disk D in W such that #{0  _< j < n : i f (x)  ~ V} _> cn for every large n. 

Proof: We choose a partit ion in domains B1, B 2 , . . . ,  Bp+l : V o f ~  n such that  

there exist Ki, Li with Bi E 7r(Ki) and f (Bi)  E 7r(Li), where Ki, Li are finite 

open cubes in ]R n , and estimate the Lebesgue measure of the sets [/] where / is 

an array ( i 0 , i l , . . .  , i n - l )  and [/] is defined as the set of points in D such that  

fJ(x) E Bij for 0 < j < n. In fact, we prove the following lemma. Let al be as 

in Corollary 2.1; then: 

LEMMA 6.6: Leb([i]) <_ C a l  n (where C is a constant depending only on f) .  

Proof." By the choice of Bi and induction we have that  fJ ([i]) E ~r (Wn N Lij_l ), 

where Wn is a lift of f~(W) to II~ n . 

To conclude the lemma we use the area expanding (Corollary 2.1) property 

along disks tangent to the center-unstable cone field and the fact that  the inter- 

section of Wnwith a unit cube has a uniformly bounded volume. By induction 

Leb([i]) <__ al~Leb(f~([i]) <_ a[nLeb(W N L~,,_,) <_ Ca[  n. | 

Now we show how to prove Lemma 6.4. Let g(i) be the number of values 

0 < j _< n - 1 for which ij <__ p. We note that  the total number of arrays with 

g(/) _< en is bounded by 

k < ~ n  k < e n  
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and applying Stirling's formula yields that  it is bounded by e~~ en (/~o goes 

to zero as e goes to zero). So the union of the sets [/] for which g(/) _< en has 

Lebesgue measure less than Ce~~ n. Choosing e small enough such that  

eZ~ ~ < al ,  we are in the setting of the Borel-Cantelli lemma and Lemma 6.4 

is proved. | 

By this lemma, we conclude that  almost all points in a dynamically fiat disk 

spend a definite fraction of their orbit outside V, which is a bad  reg ion  for 

uniform hyperbolicity. 

To prove Proposition 6.3 it is enough to take Co = - log(ar  + 60)1-~), and 

50 small enough guarantees that  Co > O. | 

COROLLARY 6.6: Any f C V satisfies the non-uniform hyperbolicity condition 

as defined in Section 2. 

Proof: Consider a foliation by the unstable leaves of fo (of course, it is not 

invariant for f ) .  Any leaf of this foliation lifted to IR n, by our hypothesis, is 

the graph of a C 1 function defined on the corresponding sub-bundle. By the 

invariance of cone fields we can easily prove that  these leaves are dynamically 

fiat and then use Proposition 6.3 to prove the corollary. | 

By Lemma 6.2 we conclude that: 

COROLLARY 6.7: Almost all points of the local unstable manifold of q satisfy 

the non-uniform hyperbolicity property. 

For any x satisfying the conclusion of Proposition 6.3, there exists N(x)  such 

that  for n > N 
n - 1  

H nnDf[E~.q(fi(x)) H <- /~n, 
i = 0  

where A is slightly larger than a~(1 + 50) 1-~ and is less than one if 50 is small 

enough. 

COROLLARY 6.8: There exists a positive Lebesgue measure subset S C W~(q), 

N E N and A < 1 such that Vx E S: 

n--1 
Vn > N H IIDIIEc'(Y'(x))II <- An" 

i = 0  

The points of S are not necessarily regular in the sense of Lyapunov. We 

cannot use Pesin theory directly for the existence of invariant manifolds and 
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absolute continuity of their holonomy. By dominated splitting and non-uniform 

hyperbolicity as above we can construct local stable manifolds. 

PROPOSITION 6.9: Every point ors has a stable manifold whose size is bounded 
away from zero. 

Proof.' We can construct local invariant disks using only the domination prop- 

erty, but  in the general case we do not know whether these disks are stable 

manifolds or not. For f ~ V by Corollary 6.8, we are able to prove that  the 

disks passing through the point of S are stable manifolds. 

Denote Emb(D ~, M) the space of C 1 embeddings from D u to M endowed 

with the C 1 topology, where D u is the u-dimensional ball of radius one. 

Using notation of [7], M is an immediate relative pseudo-hyperbolic set for f 

if there exists a continuous function p such that  

(3) IIDf:~(~)ll < p(x) < m(DflE~(~)), 

where re(T) = IIT-1l1-1 
In our case, dominated splitting and compactness of ~7 '~ imply relative pseudo- 

hyperbolicity. We deduce that  there exist continuous sections 

�9 r M--+Emb(D ~', M), 
�9 r M__+Emb(D ~, M), 

such that  W~8(x) := r and W~U(x) := r have the following 

properties: 

�9 TxW  (x) = 

�9 TxWi (x) = EC (x). 

The other important  property is local invariance. That  is, for all 0 < ~1 < 1 

there is 0 < c2 < 1 such that  

�9 f(WCf(x)) C WCS(f(x)), 
�9 f-l(weCU(x)) C WCU(f-l(x)). 

Given any c we can take ~1 such that  

(4) l - c <  IIDfiT~WC~(x)ll < l + c  whend(x,y)<el ,  yeWCS(x). 
llDflE~.~(z)]l 

We can take this el uniformly in x as M is compact and the section is continuous 

with image in embeddings endowed with C 1 topology. Choosing e2 such that  

fi(WC:(x)) C WClS(fi(x)) for all 0 < i < N we show that  for all natural n, 

d(fn(x), fn(y)) _< el. In fact, we prove by induction that  d(fn(x), fn(y)) goes 

to zero as n goes to infinity. Define 

(5) ~ := (1 + c)A 
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and c is adjusted such that  A < 1. As d(ff(x), if(y)) _< s for 0 < i < N + k - 1 

we have 

d(fN+k(X), fN+k(y)) ~_ (1 + C)[IDf[E~,(fN+k-l(x))[[d(f N+k-l(x) ,  fN+k-1 (y)) 

N+k-2 
<- ~I [lDflT~,W:~(f'(~))llllDflE~'(::+~-lf~))lld(x,Y) 

i--'--O 

N+k-1 --n+k 
~-- (l +C)n+k I I  [[Df[Ec~(f'(z))[[ d(x'y) <-A d(x,y), 

i = 0  

where zi E WCs(fi(x~; this is all by the Mean Value Theorem. | 
E 1 \ \ l ]  

7. A b s o l u t e  c o n t i n u i t y  

In this section we prove that  the hotonomy map by the local stable manifolds 

constructed for the points in S is absolutely continuous. 

THEOREM 4: For large n, the holonomy map from S C WlUcal(q(f), f)  to 
fn(D~c ) is absolutely continuous. That is, it sends the non-zero measure subset 
of S to a non-zero measure subset of fn(D~). 

Let us mention that  holonomy map h is defined on the whole of S for large n. 

From now on we call its inverse 7r, which is a holonomy along stable manifolds 

from f n ( D ~ )  to W~(q). We are going to prove that  if B is a measure zero set 

in h(S) C f ~ ( D L )  then Leb(u(B)) = 0, and then conclude that  Leb(h(S)) ~ O. 
For this, it is enough to show that  for every disk D C fn(T~i) with center in 

h(S), the holonomy ~ from D to WU(q) does not increase measures more than 

a constant which is uniform for all such disks: 

Leb(zc(D)) < KLeb(D). 

Indeed, for any measurable set B with zero measure, we can cover it by a family 

of disks D such that  ~DeV m(D) is arbitrary close to zero. As Leb(Tr(D)) <_ 
KLeb(D), we conclude that  Leb(~r(B)) = 0. From now on S' represents h(S). 

To prove this absolute continuity result we use the ideas of [14]. The difference 

is that  here the points for which we construct stable manifolds are not necessarily 

regular. We see that  a non-uniform hyperbolicity and a good control on the 

angles of two invariant sub-bundles is enough to get an absolute continuity 

result. A short sketch of the proof is as follows. 

To compare Leb(D) and Leb(Tc(D)) we iterate sufficiently such that  fn(D) 
and fn(~r(D)) "become near enough". But after such iteration, fn(D) may 
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have a strange shape, so in 7.2 we consider a covering of fn(S')  N fn(D) by 

Bi := B(an, fn(xi)) (ball of radius an with center fn(xi)) where xi is in S '  

and an is much larger than d(xi, 7r~(xi)), where 7rn is defined naturally by 7rn = 

f n o T r o f - n .  

By the specific choice of an, in 7.3 we show that  Leb(Bi) ~ Leb(Trn(B~)). 

Indeed, the dominated splitting of the tangent bundle allows us to choose them 

in such a good way. Finally, in 7.4 we prove some distortion results and come 

back to compare the volume of D and 7r(D). 

7.1. SOME GENERAL STATEMENTS. Let us fix some notations and definitions: 

�9 dl (resp. d2) := restriction of the Riemannian metric of manifold to f~(D) 
(resp. WU(q)). 

�9 d~ := intrinsic metric of stable manifolds. 

�9 d := Riemannian metric of the manifold M. 

�9 a -< b means a < kb for a uniform k > 0, a, b E II~. 

�9 a ~ b means that  k -1 < a/b < k for a uniform k > 0. 

De~nition 7.1: If E,  F are two subspaces of the same dimension in ~n,  we define 

the angle between t h e m / ( E ,  F)  as the norm of the following linear operator:  

L: E --+ E • such that  Graph(L) := {(v,L(v)),v E E} = F. 

Definition 7.2: A thin cone C~(E) with angle e around E is defined as subspace 

S s.t. x'(S, E) _< ~. 

By the definition of cones it is easy to see that:  

C U  C$ LEMMA 7.3: I f  C~ , C~ are two cone fields which contain E ~ ,  E cs (the sub- 

bundles of dominated splitting), then DfxC~(x )  C C~( f ( x ) )  for some 

0 < A < 1, or in other words the angle wi11 decrease exponentially. 

Proof." Take S E CCU(x) and v E S. By definition v = vl | v2 where 

vt E E cu, v2 E E cs and by dominated splitting (see section 2) 

IIDfx(v )ll < IIv211 
IID ) ll - 

and this means that Z(Df(S) ,  EC~(f(x))) < AZ(S, E~(x))  by Definition 7.1. 
| 

Let us state a lemma that gives us some good relations between dl, d2 and d. 



Vol. 142, 2004 STABLY ERGODIC DIFFEOMORPHISMS 333 

LEMMA 7.4: Let ]~n = S | (U = S • and h be a C 1 fUnCtiOn from B(O,5) C 

S (ball of radius ~) to F, where F is in a small cone C~(U). Suppose that 

Tx(graph(h)) C C~(S),Vx e graph(h). Then: 

�9 dh(Z,O) (_ C(e)d(z,O), where dh is distance on graph(h), 

�9 Leb(graph(h)) < C(e)Leb(B(O,(~)), 

where C(e)-+ 1 when ~ goes to zero. 

Proof: By the hypothesis on graph(h) and the definition of angle, we conclude 

that IIDxhll <_ c and the proof of the first item goes just by the Mean Value 

Theorem. The second item is also easy to prove just by the formula of the 

volume for the graph of a function (see Chapter 1 of [6] for the formulas). | 

In what follows we consider a C 1 function which is defined on a ball of a linear 

subspace of ]~n to another subspace. We show the relation between the norm 

of the derivative of such a function and another one which locally has the same 

graph and is defined on a slightly perturbed domain or codomain. 

F • 

E 

LEMMA 7.5: I fh  is a C' function from B(0, r) C E to F such that [[Dh(x)[[ <_ a 

(small), where F is a linear subspace with A(E • F) <_ b (also small); then 

graph(h) will be the graphic of a new function h: Dom(h) C E ~ E • and 

[]Dh[[ _< Ka (where K is a constant converging to 1 when b goes to zero). 

LEMMA 7.6: I f h  is a C 1 •nct ion from B(0, r) C E to E • such that  IIDh(x)[I <_ 

a (small positive number) and F is a linear subspace with the same dimension 

orE, w i t h / ( E ,  F) <_ b (also small), then graph(h) will be the graphic of a new 
 nction Dom( ) C F Y• IIDhll < 2(a + b). 
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The proof of Lemma 7.5 comes out just by the definition of angle and the 

derivative of a function. We prove Lemma 7.6 as follows. 

Proof: First observe that  by the definition of angle in Definition 7.1, IIDh(x)l I 

is equal to the angel between E and T(x,h(x))graph(h). So to prove the lemma 

suppose that  A(E, F) = b and A(E, G) = a with a, b small. Let f be a linear 

map from F to F • whose graph is E and ~: E --+ F • and g: F ~ F  • be the 

maps with G as their graph. We are going to show that  Ilgli _< 2(a + b). By the 

definition of x'(F, E) and using Lemma 7.5 we have (see Definition 7.1) 

LIg(x)Li ~ lJf(x)Ll + li~(x + :(x))Ll ~ ll.f(x)LI + ICallx + f(x)N, 

where K is near to one and is obtained by Lemma 7.5. Hence we get 

llg(x)ll < b + Ka(x/1  + b 2) < 2(a + b) 
JlxTI - 

and the proof of Lemma 7.6 is complete just by taking G = T(x,h(x))graph(h). 
| 

The dependence of invariant sub-bundles E TM, E cs on the base point is an 

important support for the proof of Theorem 4. The following control of the 

angles is a product of dominated decomposition and can be done with the same 

arguments as in [15], pages 45-46. 

LEMMA 7.7: There exist constants 0 < a < 1 and 0 < 0 < 1 with the following 
property: 

if d(ff(x), if(y) is small for i = 0 , . . . ,  n then for any two subspaces $1, $2 
respectively in CC~(x), CC~(y) (small cones) 

z(-(Dfn(s1), D f ; ( S 2 ) )  ~_ 0 n -[- d is t ( fn(x) ,  fn(y))C~. 

Remark 7.8: In Lemma 7.7, 0 < 1 comes from dominated splitting and we can 

take 02 = )~ where ;~ is as in Lemma 7.3. 

7.2. COVERING f n ( s ' )  BY A GRAPH OF C 1 FUNCTIONS. We are going to 

show that  for every point x in S'AD, fn(D) locally can be seen as the graph of a 

C 1 function from ECU(fn(x)) to ECS(fn(x)) with norm of derivative converging 

to zero uniformly as n goes to infinity. By this, we intend to cover fn (S')Nf n (D) 

by flat disks. Let us set Yn := fn(x) and Y~n := 7rn(Yn). 
We mention that  for all n, fn(D) is tangent to a thin cone which varies 

continuously. We show that  there is a disk (inside fn(D)) around yn which can 
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be described as the graph of a C 1 function. The size of this disc decays when 

n grows, but  it is definitely larger than the stable distance (d~) between Yn and 

Y'n" 

LEMMA 7.9: There exists 5 > 0 such that for 51 < 5 and any x E M,  i f  

BCU h: 5~(0) c E~(x),  h (0 )=0 ,  liDh(~)ll <_k, V~e 5~ 

and graph (h) C B~ ~ • B~, then W = f(graph(h)) n ( B ~  x B~) will also be a 

graph of some h with the following properties: 

(1) its domain contains B ~  1 and tt(O) = O; 

_ B TM C E ~ ( f ( x ) ) ;  (2) IID~(,Z)l I < kO, V~ �9 ~ 

(3) A < 7 where A is defined in equation (5) in Section 6. 

Proof: As f is C 2, there exists 5 such that  for all x E M, f can be written as 

f ( ~ , ~ ) = ( A ~ ( ~ ) + r 1 6 2  

where (~,~) E B~ u x B~ s and HD(OCU,OCs)ll <_ ~. Just to reduce the notations 

suppose that  x is a fixed point. We define 

�9 a(~) = ~ := AC~(~) + 0c~(~, h(~) -- AC~(~ + (ACU)-l(~)Ocu(~, h(~)); 

�9 /~(~) = Ar + Ocs(~, h(~)); ~ c B~(O).  

Now as II(AC~)-l[I _< 1 + (f0, choosing e small enough we deduce that  

N(ACU) - t  [ILip(r h(~))) < 1, 

and this shows that  a = AC~(.)(Id + (AC~)-l(.)r h(.)) is invertible. So it is 

enough to determine the domain of a -1 and define h =/~ o a -1 for proving the 

first part  of the lemma. 

Observe that  

( 1 
2~) I1~11 > ~lI~ll, II-(~)II > IlAC~(~)ll- IIr > ~1 

+50 

where 7 is near to one as 50 is small enough. Now with the aid of the proof of 

the inverse function theorem, a -1 is defined on B ~  1 and 

= 3 o a - l :  B TM -+B ~8 

is what we want. Observe that  as A < 1, the third part  of the lemma also turns 

out. 
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Now we will verify the claim about the derivative of h. By dominated splitting 

we have 0 < 0 < 1 such that II(AC~)-l(f(x))llllACS(x)ll <_ 02 (02 is just the A in 

Lemma 7.3). By choosing e small enough such that tlD~ll <_ k / v~  we get 

IIDh(~)ll <_ IID~(~)[IIIDa-I(~)N <_ -~[IACSllll(ACU)-lllllD(I + T)-III, 

where T = (ACU)-lr h(~)). On the other hand, we have 

1 1 
][D(I + T)-I][ = [](I + DT)-I[I <- E [[(DT)i[I- 1 -[IDT[I <- - ~  

i=o 

for ~ small enough. So [[V/t(x)[[ < kO. | 

Let us see how to cover f n ( S t ) ~ f n ( D )  by disks. For x E S 1r iD there 

exists 5 > 0 (uniform in D) and C 1 functions hz such that hx: E~U(x) -+ 
E~S(x) and the graph of hx is a ball around x. Now by Lemma 7.9 there exists 

BCU (~,~ BCU hf,.(x): ,r,.5~.~] --+ Er such that hf , (~)(~,5(x))  is a ball around y~ 

and also we have a good control on their derivative. That is, 

[[Dhn(x)[[ ~ k~ n 

where hn represents any hf,,(z). Applying Lemma 7.4 we get 

d(z, Yn) <_ dl (z, Yn) <_ knd(z, y,) Vz e graph(ha) and k~ --+ 1. 

c u  X So we conclude that hf,,(~)(B,~5 ( ) )  is a ball of radius arbitrarily near to 2an := 

,~n(~ by taking n large enough. We call this ball Bn (around Yn) and Bn the ball 

with radius an around Yn. 
We mention that/~n is also the graph of a function from E cu to (ECU) • over 

P(/~n), where P is the orthogonal projection along (ECU) • 

Remark 7.10: By the estimate of the derivative of ha, P(Bn) is contained in 

the ball of radius 2an(1 + CO n) and contains the ball of radius 2an(1 - con), 
where C depends on the angle of (ECU) -L and E cs. 

In what follows we are working with Bn as the graph of the mentioned new 

C 1 function, which we also call ha, and it is easy to see that ][DhnH ~_ KO n 
(Lemma 7.5). 

Now we define a new transformation from Bn to WU(q) which is very near 

to holonomy 7rn. Let z �9 Bn and define P(z) by translation along ECU(yn)• 
which is orthogonal to the tangent space of all points of/~n. One important 

property of P is that d(z, P(z)) is exponentially small. Indeed, we choose an 
small enough for d(z, P(z)) to be comparable to d(yn, Y~n) = ~n. 
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7.3. COMPARING MEASURES OF Bi AND 7rn(Bi). In the previous section we 

saw how to cover fn (s ' )  N fn(D) by balls/~i. In what follows we prove that  the 

volume of these disks does not increase "a lot" by holonomy. Indeed, we have 

to take an in a good way to have this property. The most important  property 

for a,~ is 

(6) in/an-"+O 

and the main proposition is the following. 

PROPOSITION 7.11: There is a constant I > O, independent of n, such that 

Leb(~r~(Bi)) <_ ILeb(Bi) 

To prove the above Proposition, we start  with some lemmas. 

LEMMA 7.12: There is a choice of an satisfying (6) such that for every z 6 Bi, 

d(z, P(z)) 

Proof." When n is large enough we can consider P ( / ~ )  also as a graph over 

EC~(yn) to EC~(yn) • but we have to consider the angle between ECU(yn) and 
cu ! E (Yn) to calculate the norm of the derivative of the new function. To estimate 

the norm of the derivative of the C 1 functions whose graphs are/~n and T)(Bn), 

we use Lemmas 7.6 and 7.5. Using the Mean Value Theorem and Remark 7.10, 

we have (see Figure 3) 

d(z, P(z)) <_K(2an + 2CanOn)O n 

A E TM E T M  ' A~. q- (2an -~- 2CanOn) (  t ( o n  -[- ( (Yn),  (Yn)))  q- 

Note that  the term containing angles in the above relations arises because of 
c ~  ! the deviation of EC~(yn) from E (Yn) and, applying Lemma 7.6, 

A,,EC~, , EC~, ,,,_0 ~ , t <Yn), <Yn)) -~ + d(yn,Yn) , 

and therefore 

d(z, P(z)) ano n + a d( n, + 
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EC~(yn) 
~, ( ECU(yn) 

:.. / / , , '  

~ , ~ ,  ~ ~ ~ I l /  

I I I  

Ecs(y ,) 

ECS(yn) 

Figure 3. Graphs over E c~. 

So to finish the proof of Lemma 7.12 it is enough to choose an satisfying the 

following two conditions: 
�9 an ~, ~ n ~ - - n  

�9 an ,~ ~n(1--a). 
Remember that  by Lemma 7.9, we need another restriction on an to have a 

graph of functions to use Mean Value Theorem: 
�9 a ~  _< 7n(~. 

So choose an = min(A'~O -~, X ~(1-~), "y~(~). As A < % already An/a~--+O. | 

LEMMA 7.13: rrn(Bi ) is contained in a ball around y" of radius near enough to 

}an as n is large enough. 

Proof: For z E Bi, 7fn(Z) lies in WU(q), which is contained in the graph of a 

function defined globally, and the graph is tangent to a thin cone field. So by 
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Lemma 7.4 we deduce that  for z C Bi, d2(Trn(Z),y~) <_ ~d(Tcn(Z),yn)3 ' and 

3 , 
d2(Trn(Z),y~n) ~ ~(d(Trn(z),yn) ) ~ (d(Tcn(Z),Z)-[-d(z, yn)-[-d ! 

3 s(Yn,Yn) < ~(~n+knan+~n) ~ -~(ds(Trn(Z),z)+dl(Z, yn)+d ' _ 

2~ n 
- - ~ a n  an 

So by choosing an as in Lemma 7.12 the proof is complete. | 

LEMMA 7.14: P(/~i) contains 7rn(Bi). 

Proof: For every z E/~i, by triangular inequality we have 

- d  ? d2(:P(z),y~) > d(P(z),y~) > d(z,yn) (Yn,Yn) d(z,~P(z)) 

1 d ' _~-~ -~ndl(Z,Yn) - s(Yn,Yn) - -d ( z ,~ (Z) )  > dl(Z,yn) - 2~ n, 

Here we have used Lemma 7.12, as k ~ l  and ~n/an--+O. We conclude that  

P(Bi) contains a ball with radius near to 2an and by Lemma 7.13 it contains 

m 

Proof  of Proposition 7.11: Choose an as in Lemma 7.12. As Leb([~i) <_ 
I1Leb(Bi) for a constant I1 not depending on n and just depending on the 

dimension of Bi, we have 

Leb(Trn(Bi)) < Leb(~~ ,~ Leb(JBi) < IiLeb(Bi) 

and the proposition is proved. | 

Up to now we have covered Sn := fn(S')Nfn(D) by a family of disks such that  

the volume of whose images under holonomy is comparable to their volume. By 

the Besicovich covering theorem [10] we can cover Sn with a countable locally 

finite subfamily {Bi}i; that  is, there is a constant C only depending on the 

dimension of D such that  the intersection of any C + 1 disk of such a subfamily 

is the empty set. 

7.4. DISTORTION ESTIMATES. Now we state the distortion control state- 

ments. By Jf(x,  A) we mean det(DfxlA). 



340 A. TAHZIBI Isr. J. Math. 

LEMMA 7.15 (Bounded Distortion): 

z E Bi the following are satisfied: 
1 <~ Jf-'~(Y.~,T~nBi) < M,  

�9 - M -  Jf-'~(y',T~.P(Bi)) -- 

�9 ~ <  <P1 .  -- af-'~(y.,,E~') -- 

There are P1, M > 0 such that for any 

Proof" The problem is that  in general we do not have HSlder control of the 

center unstable fibers. But in the case of dominated decomposition or, in other 

words, when we have a hyperbolicity property for the angles, one can show 

statements near to HSlder continuity. 

As f is a C 2 function, we conclude that  there exist constants R1, R2 > 0 such 

that  if Zl, z2 E M, d(Zl, z2) _< 1 and $1, $2 are subspaces of II~ n with dimension 

u (dimension of Ec~), then 

(7) I l o g J f - l ( z l , A 1 ) - l o g J f - l ( z 2 , A 2 ) l  <_Rld(q,z2)+ R2Z(A1,A2). 

Now using the above inequality and Lemma 7.7 we have 

I log Jf -n(yn ,  ECU(yn)) - log Jf-n(y~n, ECU(y~n))l 
n--1 n--1 

~i~I ( ~-~dis t ( f - i (yn) , f - i (y ln) ) ) - -~R2(  E al(Ecu(f-i(yn))'ECU(f-i(yln)))) 
i=o i=o 

n--1 
r C~I:~-~ ~-(/(R2 Jr ~ I ) ~  dis$(f- i(yn), f- i(yln))  ~ 

i=o 

for some constants C, K > 0. So again using (7) we conclude 

I log Jf -n(yn ,  TynBi) - log Jf-n(y~n, Tu, P(B~)) I 

-<1 log j y-n(yn, Ty,~Bi) - log J f -n(yn,  (ECU(y~)))l 

Js 1 + Iloggf-n(yn, ECU(yn) ) - l o g  j ~Yn,ECU(y~n))l 
j ~ - n ,  , j , - n ,  , +l log  j  y ,ECU(U'n))-log J 

n-1 n-1 
R2 

(8) -< 1 - 0 + (KR2 + nl) E dist(f-i(Yn)' f - i (y , ) )~  + 2R2 E On-i" 
i=O i=0 

As Yn, Y'n are on the same strong stable manifold, all of the terms appearing 

in (8) are summable and the proof of the first item of the lemma is complete. 

In fact, our argument shows that  we can substitute Yn, Y~n respectively by any 

point Wn e Bi A fn(SI) and r~n(w~). The second item of the lemma comes from 

the same arguments, remembering that  the size of Bi C fn(D) is exponentially 

small. | 
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Now we apply distortion estimates of Jacobians to get 

Leb(Tr(D)) ~ ~ Leb(f-n(~n(Bi)) ~ MP~ ~ Leb(f-n(Bi)) 
i i 

~_ IMP ~ neb(f-n(Bi)). 
i 

Leb(~rn(Bi)) 
Leb(Bi) 

But as {Bi}i is a locally finite family covering S n  and by f-n, the areas 

of disks tangent to C cu decreases. Taking n sufficiently large we see that  

~i Leb(f-~(Bi)) <- ALeb(D). So taking P12 = P we conclude 

Leb(~r(D) ) 
Leb(D) <- IMPA(universal). 

8. Appendix  A: Robust  indecomposabillty 

Topological transitivity of C 1 diffeomorphisms and ergodicity (metric transitiv- 

ity) of the Lebesgue measure for the C 2 conservative systems are two kinds of 

indecomposability. The existence of SRB measures with full support and full 

Lebesgue measure of the basin (like in the C2-Anosov diffeomorphism case) is 

also a kind of indecomposability which in the conservative diffeomorphism case 

implies ergodicity. By results of [3] we know that  Cl-robust transitivity implies 

dominated splitting. For constructing SRB measures we need more regularity 

than C 1. So we define Cl-robust indecomposability as follows: 

Definition 8.1: Let Diff 1+ = [-J~>0 Diffl+~(M) �9 For f E Diff 1+ we say f is 

C 1-robustly indecomposable if there is an open set U C Diff 1 (M) such that  any 

g E U N Diff 1+ has an SRB measure with Leb(B(#)) = 1 and Supp(#) = M. 

PROPOSITION 8.2: Any Cl-robustly indecomposable diffeomorphism has 
dominated splitting. 

Proof'. Let U be an open set as in Definition 8.1. We claim that  any f E 

U N Diffl+(M) is transitive. To show this, take two open sets A,B in M. As 

Supp(#) = M, so #(A), #(B) > 0. Let x E B(#); by definition of the basin, the 

orbit of x goes through A and B infinitely many times. This means that  some 

iterate of A intersects B. 

Now suppose gl C U does not admit dominated splitting; by the results in [3] 

one can perturb gl to get g2 E U with a sink. Now by the density of Diffl+(M) 

in Diff 1 (M) and persistence of sinks in C 1 topology, we get a diffeomorphism 
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g3 in U n Diff 1+ (M) which has a sink and so cannot be transitive, contradicting 

the above claim. | 

9. A p p e n d i x  B: S i m u l t a n e o u s  h y p e r b o l i c  t i m e s  

In [1, Theorem 6.3], ergodic cu-Gibbs measures for diffeomorphisms with domi- 

nated splitting and the non-uniform hyperbolic property like in the Preliminaries 

(Section 2) are constructed. These measures are absolutely continuous along a 

family of disks which are tangent to the center-unstable cone field. 

PROPOSITION 9.1: For f E F, the cu-Gibbs measures as above are SRB; that 

is, their basin has positive Lebesgue measure. 

To prove that  these measures are SRB, one needs to show that  for points in 

the support of these measures, all the Lyapunov exponents (in the E c~ direction) 

are negative. To provide negative Lyapunov exponents, in [1], the authors add 

the condition of "simultaneous hyperbolic times". We show that  for f E V it 

is not necessary to verify this condition and see that  the cu-Gibbs measures 

constructed there are indeed SRB measure. 

For any y �9 Supp(#), where # is one of such cu-Gibbs measures, there exists 

x such that  y �9 D~176 where D~ is tangent E c~ at any point of it and, 

moreover, it is the local strong unstable manifold of x (see [1, Lemma 3.7]). 

LEMMA 9.2: I f  f �9 ]2, then for Lebesgue almost all points of D~176 the 
Lyapunov exponents in the E cs direction are negative. 

Proof: By the above observations about D~176 we may consider the lift of 

D~176 to ]Rn included in the graph of a global C 1 function 7: ll{U ~ ]Rs with 

�9 

So by the definition of dynamically flat submanifolds in Section 6, D~176 is 

contained in a dynamically flat submanifold and, by Proposition 6.3, for almost 

all points in D ~176 (x) all the Lyapunov exponents in the E cs direction are negative. 

| 

Now using Lemma 9.2, a standard argument shows that  the cu-Gibbs 

measures are really SRB, or their basins have positive volume. 

Proof of Proposition 9.1: Let p be such a Gibbs ergodic measure. There exists 

some disk D ~176 such that  almost every point in D ~176 is in the basin of #. By 

absolute continuity of stable lamination of the points in D~176  B(#)  and the fact 
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that  these stable manifolds are contained in B(p) ,  we conclude that  the basin 

of # must have positive Lebesgue measure. | 
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